STREAMING BIG DATA

- Popular Options for Ingesting LIVE Data Streams -

SPARK STREAMING

A framework for scalable, fault-tolerant processing of live data streams.

THE SETUP:

- Spark Engine
- Directed Acyclic Graph
- Tasks are assigned to worker nodes by the DAG scheduler.

DSTREAM

Discretized chunks of data are created at a fixed time interval.

Operations performed on a DSTREAM are continuously applied to new microbatches of data as they are received.

INDIVIDUAL OPERATIONS

Spark Streaming enables you to perform computations over a sliding "window" of data:

1. **Batch Interval:**
 - Sampling frequency - the size of each batch (here: 1 second)
2. **Slide Interval:**
 - Computational frequency - how often are calculations refreshed? (here: 3 seconds)
3. **Window Interval:**
 - Total history size for each calculation (here: 6 seconds)

3 KEY CONCEPTS

- Batch Interval
- Slide Interval
- Window Interval

EXAMPLE ARCHITECTURE:

Data produced by the server

Data ingested by Flume

Avro-formatted data published on port XXXX

Spark Streaming listens on port XXXX & performs windowing operations on incoming minibatches.

Real World Example:

Average click through rate for the last hour (window interval), updated every 5 minutes (slide interval) with data collected every 30 seconds (batch interval).

POPULAR ALTERNATIVES TO SPARK:

STORM

Networks of Spouts & Bolts => graph of computation

FLINK

The youngest technology in the Streaming arena.

- Supports:
 - Real-time processing
 - Machine learning

Example Architecture:

Data produced by the server

Web Logs

Data ingested by Flume

Channel

Source

Sink

Flume Agent

"Push Mechanism"

"Spout" (sources)

"Bolt" (processing)